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1.0 SINGLE CLASSIFICATION EXPERIMENTS

A paper containing a comprehensive treatment of sets of

two-parameter Weibull data arising from single factor experi-

ments, was published in the Journal of Statistical Planning

and Inference (Vol. 3, 1979, pp. 39 - 68). A second paper,

aimed primarily at an engineering audience was prepared and

submitted to the American Society For Testing and Materials (ASTM)

for presentation at-their International Symposium on Contact

Rolling Fatigue Testing of Bearing Steels to be held in May 1981.

The paper will appear in the Proceedings of that meeting, which

is planned to appear as an ASTM special technical publication.

This paper extends the range of the tabular values needed

in conducting the analysis from a maximum sample size of n = 10

to a maximum of n = 30. Specifically, new tables are included

for n = 15(5)30 with censoring amounts ranging from r = 5(5)n

and with k = 2(1)5 samples per experiment. In the paper, two

illustrative numerical examples are used to illustrate each of

the analysis procedures viz.:

(1) Testing the equality of shape parameters

(2) Testing the cluality of scale parameters

(3) Setting confidence limits on the shape parameter

(4) Setting confidence limits on the tenth percentile

of each population sampled, and1 (5) Conducting a single range multiple comparison

test to divide the population into groups.

!
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The data used for illustration were the results of roll-

ing contact fatigue tests conducted with several types of

steel using two distinct types of tester. The data were collect-

ed under an Air Force sponsored program with one set of tests

conducted at Wright-Patterson Air Force Base and the other at

the Pratt and Whitney Division of United Technology, Inc.

The analysis shows that the life ranking of the steels

-when analyzed as a set was the same for both test devices.

This methodology is now routinely applied within SKF to analyze

data taken for industrial and DOD sponsors as well as for cor-

porate use.

An application of the analysis to a study of the compara-

tive effect of six bearing greases on the life of automotive

ii wheel bearings, was conducted under U. S. Army Contract No.

I| DAAK70-77-C-0034 and appears in the final report.submitted to

the U. S. Army Mobility Equipment Research and Development

I Command at Fort Belvoir, Virginia. The report is SKF Number

AL78T022 entitled "Performance of Automotive Wheel Bearing

I Greases."

I 2.0 LOCATION PARAMETER ESTIMATION AND INFERENCE

During this contract year, work on inference for the Weibull

I location parameter was extended, applied, and reported in full.

3 Extensions comprised (1) the computation of additional

"C -. : "2
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critical values of the statistic used for testing whether the

Weibull location parameter exceeds zero. Values are now avail-

able for sample sizes ranging from 10 to 40. (2) Additional

computations were performed for the purpose of comparing the

power of this inferential technique to the Mann-Fertig method.

The power was found to be almost identical. (3) An analytical

proof was developed of the decreasing monotonicity with X of the

ratio w(X) = a(rl)/8(r2 ), where rl<r2 and where 8(r) is the ML

estimator of the Weibull shape parameter based on the first and

r-th order statistics when an amount X is subtracted from each

order statistic.

The more general result regarding the monotonicity of

w(A) when $(r) is defined as the ML estimator based on all

order statistics has not been proven but has repeatedly been

demonstrated with data samples.

-Two applications of the methodology were made using actual

data samples taken from two diverse areas of activity. The

first application was to a data sample that represented time to

ignition events for fuzing devices. The possible application of

the three parameter Weibull model in this context had been sug-

gested in private communication with Dr. B. Kurkjian when he was

chief mathematician of the U. S. Army Materiel Command. The

model is attractive for this application because if it fits, the

3
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location parameter will correspond to the "safe" time prior

I to which an armed device cannot undergo ignition. Numerous

contacts were made at Wright-Patterson (W. Romans Air Force

Logistics), at Kirtland (Neal Chamblee), and at Eglin Air Force

Bases to discover sources of time-to-event data. After

discussions with staff members of the engineering and quality

assurance departments, Mr. Jasper Glover, head of the Reliabili-

ty Department at Eglin, finally referred us to Mr. Charles Yates

of his department, who kindly supplied a sample of 29 time-to-

event data unidentified as to source. The data were analyzed

and showed that a mixture model was a better fit to the data

than the three parameter Weibull model. The results of the

analysis were presented in a Technical Report, "Analysis of

Time-To-Event Data Supplied by Eglin Air Force Base." A copy

is included herein as Appendix I. Copies of the report were

* sent to Mr. Yates at Eglin and on his recommendation, to Mr.

T. Mitchell who is responsible for the setting of safety re-

j quirements. The results were also discussed with, and a copy

of the report sent to a Mr. L. Cox of the Army's Harry Diamond

1 Laboratories. Mr. Cox is concerned with the performance of

fuzing devices developed by the Army.

The Eglin analysis taught that the methodology is useful

I for distinguishing two superficially similar looking types of

data, namely: samples from a mixture of a pair of 2-parameter

4I 3Ji~:'~.O---- - -.CE
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Weibull population. To make this distinction, one censors a

proportion of the upper end of the data and reperforms the hy-

pothesis test. If a significant result is no longer so after

the censoring, the mixture model is assumed to obtain.

A second application was made using data taken from the

results of a foot race. The object was to determine whether

a bound on human performance potential could be found. Again,

it was found that a Weibull mixture model was in better accord

with the data than the three parameter Weibull model.

The extended tabular data and two illustrative examples

discussed above have been described in a paper, "Inference

on the Weibull Location Parameter," submitted for publication

to Technometrics. A verbal presentation having the same title

will be made at the Joint Meetings of the American Statistical

Association to be held in Houston, Texas in August 1980. A

handout synopsizing the talk has been prepared and is included

herein as Appendix II.

3.0 WEIBULL REGRESSION OR ACCELEP XTED TEST ANALYSIS

During a previoui contract year, we developed methodology

for drawing exact inferences in this setting: (1) Type II cen-

sored life tests are conducted at various levels of a factor

referred to as a stress. (2) At each stress level, the life

follows a two parameter Weibull distribution with a shape para-

5
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meter s that is invariant with stress and a scale parameter

that varies inversely with a power y of the stress. Using the

distribution of certain pivotal functions determined by Monte

Carlo sampling, it was found possible to set confidence limits

on:

(1) The exponent in the relation between scale

parameter and stress,

(2) The Weibull shape parameter,

(3) A percentile of the life distribution at any

specific stress.

A verbal presentation of this material was made at the ASA

joint conferences in August 1979. A copy of the handout mater-

ial distributed at the conference is given in Appendix III.

A paper was prepared describing this work and illustrating

the methodology on four rolling contact fatigue test samples

conducted at four stress levels. Editorial changes to the

paper were made in the current contract year and the paper,

entitled "Confidence Limits for Weibull Regression with Censored

Data," appeared in tl.e IEEE Transactions on Reliability, Vol.

IR-29, No. 2, June 1980.
J A question raised by a referee regarding the goodness of

the power function model for stress-life, prompted the recogni-

tion that one could perform such a test using the ratio of 8(l),

6
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the ML shape parameter estimate unconstrained by any relation

among the scale parameters, to the estimate s under the power

function constraint. Accordingly appropriate code was added

to the simulation program REGSIM to calculate a(1).

The program REGSIM as originally configured, calculates

the distribution of five random variables; these variables

being specified functions of the ML estimates 3, and the p-th

quantile xp(S) estimated at stress S.

The program REGSIM has now been modified to accommodate

the calculation of five additional random variables giving a

total of ten. The first three are as follows:

(1)
(2) -()1

(3) (y-y)*8

The next "k" are the values of the random variable

Bln(xp/xp) computed at the k stresses, at which life tests are per-

formed. The next (7-k) random variables are the values of •

ln (xp/xp) at (7-k), other specified stresses.

The distribution of the first random rariable abc.ve, 3/8,

is needed for setting confidence limits on 3. The second is

used for testing the adequacy of the power function fit. The

distribution of the third random variable is needed for calcu-

lating confidence intervals on the stress-life exponent. Fina'.ly

7
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the distribution of $ln(2Cp/xp) is used for setting confidence

intervals on x at any given stress level.

Computer runs have been made for k = 2, with life tests

at stresses sI = 1.0 and s2 = 1.2. Supplementary stresses

were taken at 0.5 (0.1) 0.9. For k = 3, the life tests were

presumed to be run at S = 1.0, 1.1, and 1.2 with supplementary

stresses of 0.6(0.1)0.9.

The percentile p = 0.10 was used throughout and the sam-

ple sizes used for each life test were n = r = 5, 10, 1S, 20.

Inasmuch as these distributions are invariant with respect

to the scale of the stress variable, they apply when the stresses,

in whatever physical units they are expressed, are proportional

to the values used in the simulation runs.

A short paper will be prepared, aimed at a user audience,

presenting the tables and illustrating their use.

4.0 TIO-WAY CLASSIFICATION EXPERIPMENTS

The likelihood equations for a general two-way factorial

analysis with Weibull response have been derived. There aie

presumed to be "a" rows and "b" columns, representing the levels

of factors A and B respectively. Five separate hypotheses have

been considered for the scale parameter nij , applicable when

sampling row "i" and column "j":

8 -~ -
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HI: nij = ai b. cij n

H2 : nij = ai bi n

H3 : nij ai n

H4 : n ij = b; n

H5 : nij T

ai, bj and cij are multiplicative row, column and interaction

effects subject to the constraints

a b a b

'Tai Tr bj i cij 7T cij =
i~l j=2 i~l j=2

n is a constant "base level" scale parameter value. H1 is the

least restrictive hypothesis. Under H1 each cell of the data

layout has its own unique scale parameter value. H5 is the

most restrictive hypothesis under which all cells are presumed

to-have the same scale parameter. Under H2 there is a row

and column effect, but no interaction. Under H3 there is only

a row, and under H4 , only a column effect.

The estimates of and ni which maximize the likelihood

function under each hypothesis subject to the row and column

constraints are listed in Table 1. They represent the case

where n items are tested in each cell until the first r fail.

We define xij(k) as the k-th ordered life within cell (i,j).

9
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Define: r
S kj = z In Exij(k)I

k=1

a b
S.. = E E Sij

j-l i=l

Tij = Z xij(k)ln xij(k)
k=l

n
Vij = E xij(k)

k=lb
Vi. - ( Vii) I/

j=l
a
j: 1/Vj = (1 I V)l/abi=l 13

b ar 7 Vij)/ab
"" j=l i=l

Likelihood ratio tests can now be constructed to test the more

restrictive of these hypotheses aglinst less restrictive alter-

natives. For example, to test H5 , the hypothesis that rij is

constant over i and j, against the alternative that all n ij

differ, one would calculate

in X - In L(H 5 ) - in L(HI)

where L(Hk) denotes the likelihood function evaluated using

n ij and 5 estimated by the methods appropriate for hypothesis

Hk•

A useful sequence begins by testing H2 against H1 to assess

the hypothesis Ho:cij 1, i.e. no interaction. If H0 is reject-

11
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ed, i.e., there is interaction, no other tests are performed.

If there is no interaction, one would then test H3 against

H2 and H4 against H2 to determine respectively whether only

column or row effects are real.

An alternate sequence would be to test HS against H1 . In

this case, if H0 is accepted, no further tests are performed

and it is concluded that neither row, column nor interaction

effects are significant. If H0 is rejected, H5 could then

be tested against H2. If this is not significant, there is

interaction and testing ceases. If it is significant, there

is a row or column effect, or both. One then tests H5 against

H3 and H4 .

In either sequence of tests, H2 is crucial for the test

of interaction. The equation for estimating the shape para-

meter under H2 is characteristically different from the esti-

mating equations under the other four hypotheses and special

numerical methods will need to be developed for calculating 82 .

Under Hl, the estimation equation is the same as for a

singi! £Lctor experiment in which k = ab tests are run. Simi-

larly, under H5 the estimating equation is identical to that

which applies to a single sample of size N - abn. That is, one

has only to combine the data in all ab cells of the design into

a single sample and estimate the shape parameter of that single

1
12
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sample to obtain B5.

The estimating equation for B3 is of the same form as the

single factor experiment with k - a and with the data in each

row combined, i.e. ignoring the columns. Similarly for the

rows are ignored and the data within each of the columns is treated

as a single group in a multiple group sample with k - b.

Thus, in the absence of interaction, the shape parameter

estimates required for testing row and column effects can be ob-

tained by arranging the data in various ways using only the soft-

ware for ML estimation of the Weibull shape parameter in k groups.

The appropriate values of k are 1, a, b, and ab. Moreover, with

little if any loss of power, the testing can be based on just

these shape parameter estimates to avoid the need for additional

software to calculate the likelihood function.

We have, accordingly, generated the required tables for

2 X 2, 2 X 3, and 3 X 3 factorial arrangements with the sample

sizes n and censoring number r tabled below:

Rows X Columns n r

2X2 3 3
4 4
5 5

10 5
10 10

13
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Rows X Columns n r

2X3 3 3
4 2
4 4
5 2
5 3
5 S
7 7

3X3 3 3
4 4
5 S

Under the assumption that interaction is negligible (cij - ),

the analysis proceeds as follows:

1. Combine all data, calculate 8s .

2. Treat each cell as a separate sample, cal-

culate 81.

3. Treat each row as a separate sample (ignore

columns), calculate 83-

4. Treat each column as a separate sample (ig-

• nore rows), calculate 84.

5. Calculate 81/ 5. If greater than its cri-

tical value, row effects or column effects

or both are significant.

6. Calculate 81/83. If significant, column

effect is real.

7. Calculate 81/84. If significant, row effect

is real.

14
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Table 2 shows the results of the analysis of a portion of

a randomized block design for rolling contact endurance test-

ing performed by Ku et al. (1). In this experiment, it was

desired to determine whether there was a difference between

two oils meeting the specifications MIL-L-7808 and MIL-L-23699

with respect to their influence on fatigue life in rolling

contact. Ten specimens were run to failure with each lubricant

on each of ten test machines. We have arbitrarily selected

test machines Nos. 1 6 2 to form a 2 X 2 layout.

The values shown in each cell are (1) the ML estimate of

the tenth percentile x0. 1 0 obtained using the ten data values

taken at the conditions corresponding to that cell. (2) The ML

estimate of x0 .1 0 under the assumption that all cells have a

common shape parameter and (3) the ML shape parameter estimate

based on cell data.

The values of ;l and 65 are shown in the center of the

layout in Table 2. 3 and are shown between the rows and

columns respectively. For reference, the shape parameter es-

timate using the data for each tester are shown az the right

hand side of each row. The shape parameter estimates using the

combined data for each oil are given below each column.

To test the homogeneity of shape parameters, an assumption

of the analysis, one computes the ratio of the largest to

15
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smallest of the cell shape parameter estimates.

w - 6.86/2.94 = 2.33

The critical value for a 10% level test based on four

samples of size n 1 10 having r = 10 failures is (2).

W0. 9 0 (n = 10, r = 10, k = 4) = 2.47

The hypothesis of homogeneous shape parameters is accept-

ed but just barely.

Proceding formally we form

B1/$ 5= 1.506

This is substantially greater than the 10% critical value

a,1/as) 0.90 = 1.085 so that row, column or both effects are

significant. Of course, an interaction effect, suggested by

the common 6 estimates of x0. 10, also would contribute to a

high value of the test statistic.

To test the difference in oils, we calculate 8l/a3 = 1.083.

The 10% level critical value is (l/B3) 0.90 = 1.085. Thus, the

lubricant difference is virtually significant.

To assess the difference between testers, we compute

8/ 4 - 1.47. This greatly exceeds the critical value 1.085,

suggesting a strong tester effect. This effect is not suggested

by the common 8 shape parameter estimates of x0.10 These es-

17
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timates in fact suggest an interaction effect.

The marginal shape parameter estimates suggest an inter-

action as well, for if the lube effect were the same with each

tester, the shape parameter estimates within each tester would

be homogeneous. The ratio of the tester shape parameter esti-

mates is 5.54/3.48 = 1.59. This exceeds the critical value

w0 .90 (20,20,2) for a 10% level test of the homogeneity of two

shape parameters based on censored samples of size 20.

This effect is also ascribable to the low shape parameter

estimate for the Tester No. 2 - MIL-L-7808 cell.

We conclude that, as in the analysis of variance for

normal distribution theory, inhomogeneous variance (shape

parameter) can cause specious results. A second application

was made to rolling contact fatigue data taken at two loads

and with two radii of curvature (3). These data also exhibited

a nonhomogeneous shape parameter.

A paper will be prepared on the analysis of randomized

block designs with Weibull response.

5.0 GROUPED DATA

Computer program WEIBSIM for simulating sets of Weibull

distributed data has been modified to form a new program GROUPSIM

1
18

7: !- "



AT80D048

for the analysis of grouped Weibull data.

The program generates one or more ungrouped samples, allo-

cates each failed item to an interval, replaces its actual value

by the cell midpoint value, and then performs conventional max-

imum likelihood estimation using the data thus modified.

The program assumes type II censoring at the r-th failure. The

implication is that testing stops when a pre-established failure

occurs. In actual testing, additional failures could occur

prior to the end of the interval containing the r-th failure.

The intervals have been chosen logarithmically. An

initial interval tDELT' is input to the program along with a

factor, 'FAC'.

The first interval extends from 0 to DELT. The second

interval extends from DELT to DELT X FAC. The terminus of the

1-th interval is calculated as

A(I) = DELT X (FAC) =

or recursively as

A (I) = FAC X A (1-1)

The program samples from a Weibull population having shape

parameter = 1 and a p-th percentile Xp = 1.0 for specified p.

The simulation results apply to any 2 parameter Weibull distri-

19
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bution if the terminus xi of the i-th interval satisfies

(xi/xp)a = A (I)

For the distribution used in the simulation, the 1st and

99-th percentiles are 0.0954 and 43.70 when using p = 0.10.

GROUPSIM was used to determine the distribution of the

pivotal quantities /S and 5ln (x0.10/xo.10 ) for a single un-

censored sample of size n = 30, using DELT = 0.1 and FAC = 2.0,

1.5, and 1.2.

The 5-th, 50-th and 95-th percentiles are tabled below along

with the corresponding ungrouped values.

RIB $1n(0 .10/x0.10)

0.05 0.50 0.95 0.05 0.50 0.95

FAC - 2.0 0.900 1.056 1.269 -0.346 0.138 0.742

FAC = 1.5 0.927 1.073 1.267 -0.306 0.132 0.672

FAC - 1.2 0.951 1.080 1.239 -0.234 0.131 0.557

UNGROUPED 0.826 1.057 1.335 -0.567 0.0536 0.915

To assess the sample size effect the values for n = r = 5 and

n = r = 50 with DELT = 0.1 and FAC = 1.5 are tabled below.

20
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~~~~ln(£o oxo O

0.05 0.50 0.95 0.05 0.50 0.95

n = r 5 0.768 1.066 1.654 -0.869 -0.129 0.913

UNGROUPED 0.680 1.235 2.815 -1.142 0.447 4.445

n = r = 50 0.937 1.060 1.213 -0.252 0.121 0.564

UNGROUPED 0.852 1.018 1.235 - - -

The following effects are observed:

C) There is consistently less variability in the grouped

data results than the associated ungrouped values.

(2) For fixed sample size, the variability decreases with

the interval width as expected, but does not appear

to be converging toward the ungrouped results.

(3) The difference between grouped and ungrouped percen-

tage decreases with sample size, i.e. convergence with

sample size appears to take place.

Superficially it appears that grouping the data results in great-

er precision in estimating the parameters than ungrouped data,

a counter intuitive result. The grouping, however, assumes per-

fect information regarding the parameters for the purpose of

standardizing the intervals. That is, the values of

(xi/xO.10)a defining the interval end points is assumed

21
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known, whereas, in fact, only the xi are known. It is recommend-

ed that this effect be examined in future studies. It is further

recommended that the results given herein, obtained by conventional

ML estimation using adjusted data, be compared in 
future studies

to those obtained with direct ML estimation using a grouped 
data

formulation.

22
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* ANALYSIS OF TIME-TO-EVENT DATA

SUPPLIED BY EGLIN AFB

1.0 Introduction and Summary

A methodology has recently been developed under the sponsor-

I ship of the Air Force Office of Scientific Research for the

unbiased point and interval estimation of the location parameter

of a three-parameter Weibull distribution.

1It has been suggested [1] that time-to-event data of the

type encountered in fuzing mechanisms may follow a three-parameter

I Weibull distribution. If this is so the location or threshold

I parameter of the distribution represents the "safe" time prior

to which the ignition event can not occur.

In this context a lower confidence limit on the location

parameter represents a quantifiably conservative estimate of the

"safe time" for the device.

This report describes the analysis of-a sample of 29 uniden-

tified time-to-event observations supplied by Eglin Air Force Base.

1 Under the assumption that the data are drawn from a three-

I parameter Weibull population, a median unbiased estimate and a

lower 95% confidence limit for the location parameter have been

3 calculated using computer program "LOCEST" implementing the metho-

dology referred to above. Subtracting the median unbiased location

parameter estimate from each event time and regarding the data thus

I adjusted as a two-parameter Weibull sample, computer program

"WEIBEST" was used to estimate the shape and scale parameter by

the method of maximum likelihood. A chi-square goodness of fit

1 -1-
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test was then performed and indicated that the fitted three-
parameter Weibull distribution did not adequately describe the

data. Instead, the data appear to consist of a mixture of two

Weibull distributions with one population, representing roughly

86% of the data, having a shape parameter of 8 = 18.6 and a second

population representing 14% of the observations and having a shape

parameter estimated graphically to be 8 - 1.4.

The data thus support the assumption that the population

from which the sample was drawn consist of a mixture of effective

items having a two-parameter Weibull distribution and a 10-20%

subpopulation of "duds" for which the event occurs at random

intervals in accordance with a poisson process. To estimate the

"safe" time associated with some arbitrary low event probability,

the long lived items should be censored prior to estimating the

Weibull parameters. If this is not done the Weibull shape para-

meter for the effective items will be underestimated and overly

conservative safe lives will be computed.

Section 2.0 of this report describes the methodology for

location parameter estimation. Section 3.0 gives the details

of the analysis of the Eglin time-to-event data.

-2-
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2.0 Methodology

2.1 The Weibull Distribution

The three parameter Weibull distribution has the cumulative

form:

Prob[X < x] - F(x) - I - exp [-(x-y)/n)8 ] ; x > y (1)

where y - location parameter

- scale parameter

8 - shape parameter

The two-parameter Weibull distribution is the special case

of Equation (1) in which the location parameter y = 0.

2.2 Graph of Two and Three Parameter Weibull Functions

For the two-parameter Weibull distribution it is readily

shown that

Y(x) A Znn(/(I-F()) -8 Zn x -8.n n (2)

Thus, in the two-parameter case y(x) is a linear function of

Xn x having slope 8 and intercept -8Znn. For the three-parameter

case

Y(x) E Zn9n (1/(7-7(x)) = S Zn(x-y) - n x I _)

The slope of a plot of y(x) against Znx in the three-parameter

case is

_ x (4)
dtn (x) z-y

-3-
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4 The slope is infinite at x y and decreases monotonically

thereafter to an asymptote of 8. Figure 1 is a sketch of y(x)

plotted against Znx for y = 0 and y > 0.

2.3 Graphical Estimation of Shape Parameter

Let x <X <X < ... x denote the ordered observations in a

random sample of size n drawn from a two or three-parameter Weibull

distribution. An estimate of f(x.) may be calculated for each

of the ordered observations using any of the various choices of

plotting position. A common choice is:

- i/(n + 1) (5)

An estimate p(xj) may then be computed by substituting

F(xi) into Equation (2).

If the sample is drawn from a two-parameter Weibull distri-

bution Y(X.) will tend to plot against Znx. as a straight line

with slope S. If y>0, i.e. the population is a three-parameter

Weibull distribution, y(X.) will tend to be a concave function

of Znxi approaching a constant slope 6 for large x, values.

Figure 2 shows how a plot of y(xi) vs. Znx i might appear

for a sample drawn from a three-parameter Weibull distribution.

If these data were regarded as a two-parameter Weibull sample

a graphical estimate of the shape parameter A could be found as

the slope of the straight line that best fits the complete data

sample.

If only a subset of the smallest ordered values were used

in graphically estimating the shape parameter, the estimate

3- would be obtained. For three parameter Weibull data L Will

-4-•M __
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y= 0

> 0

in(y) Lri(x)

FIGURE 1. PLOT OF y(x) AGAINST t.n(x) FOR y =0 AND y >0

-. --------



AL79PO26

Ib

• BA

in(x)

FIGURE 2. GRAPHICAL ESTIMATION OF WEIBULL SHAPE PARAMETER
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tend to exceed aA" On the other hand when the sample is drawn

from a two-parameter Weibull population (y-O), $, and wA Will

be comparable.

2.4 Maximum Likelihood Estimation of Shape Parameter

Rather than graphical estimation we consider maximum likeli-

hood (ML) estimation of 6.

For a sample of size n censored at the r-th ordered observa-

tion xr, the ML estimate of a for a two-parameter Weibull distri-

bution is the solution of the nonlinear equation:

A r rr
1/s8 + Z Logxj/r -(Z x Zg-x(n-r)x )/( Z xa+ (n-r)xa) = 0 (6)

i-i i=2 i-I

It has been shown (cf. McCool [2]) that 616 is a pivotal

function, i.e. it follows a distribution that depends on n and

r but not on the underlying Weibull population parameters.

Denoting the solution of Eq. (6) as $ and the solution of
AA A

Eq. (6) with r1 <r as a., the distribution of w = 8A/ L will

depend only upon n, r,, and r when the underlying distribution

is indeed of the two-parameter Weibull form. When the underlying

distribution is the three-parameter Weibull the mean value of

BL will increase proportionally more than the mean value of 3.4.

With the percentiles of w determined by Monte Carlo sampling

for specified r,, r and n one may reject the hypothesis that

y - 0 at the 100a% level if

A/L > - (7)

-7-
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2.5 Interval Estimation

Given that a random variable x is drawn from a three-parameter

Weibull population having location parameter y the transformed

variable y = x-y will follow a two-parameter Weibull distribution

with the same scale and shape parameters as the three-parameter

distribution. Thus, if y is subtracted from the observed data
A

prior to calculating 8A and aL from Eq. (6), the resulting ratio,

denoted
A

W(Y) = sA(8)

will follow the null distribution of w determined by Monte Carlo

sampling from a two-parameter Weibull population for given values

of n, r, and r.

We may thus write the 100(1-a)% probability statement

Prob [w(y) < wl = -a (9)

We also need the fact, heuristically suggested by the analogy

to graphical estimation, that if an amount X is subtracted from

each observation in a given sample prior to calculating

$A and 6L, w(X) = A/$L will be a decreasing function of X.

Accordingly, we may invert the inequality of Eq. (9) to give a

100(1-a)% lower confidence limit for y, i.e.

Y>w - {w} (10)

-8-
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3.0 Analysis of Eglin Data

3.1 Analysis as a Two-Parameter Weibull Sample

* Table 1 is the output of computer program WEIBEST which was

applied to the raw Eglin data. The tabular output at the top of

Table 1 is a sorted list of the 29 observations of time-to-event

in seconds.

The first line below the sorted times gives the maximum

likelihood estimates of the tenth and 50-th percentiles (desig-

nated L1 0 and L50 , respectively) and the Weibull shape parameter

a, computed under the assumption that the data were drawn from

a two-parameter Weibull distribution. Subsequent lines in Table

1 give lower and upper 90% confidence !'nits and gi-n unbiased

estimates of L1 0, L50 and a.

Figure 3 shows a probability plot of the data using scales

on which two parameter Weibull samples tend to plot as a straight

line. The fitted two-parameter population is shown as a solid

straight line and is clearly a poor fit to the data. The two

dotted straight line segments fitted to the data are discussed

further below.

3.2 Analysis as a Three-Parameter 'eibull Sample

Figure 4 is a plot of the function w(X) computed from Eq.

(8) for positive X values. In calculating this plot ri was taken

as 5 and r2 as 29. The plot decreases with X, approaching a ver-

tical asymptote as X approaches the first order statistic :()

i -9-
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TABLE 1

WEIBEST OUTPUT RAW DATA

TIME-TO-EVENT DATA FROM EGLIN AFB

Group No. 1 Lives

5.2200 6.0700 6.5500
5.4100 6.1500 6.5600
5.7300 6.2600 6.5900
5.7800 6.3100 6.6000
5.7900 6.3400 6.7300
5.8700 6.3500 7.1300
5.9200 6.4300 7.8300
7.9800 6.4400 9.2800
6.0000 6.4500 10.2800
6.0300 6.4600

LaQ_ BETA

0.4556E 01 0.6501E 01 0.5299E 01

LCL LIO MED LIO UCL LI0

0.3748E 01 0.4524E 01 0.5113E 01

LCL L50 MED L50  UCL L50

0.6024E 01 0.6499E 01 0.6912E 01

LCL BETA MED BETA UCL BETA

0.3893E 01 0.5125E 01 0.6592E 01

-10-
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, The median unbiased estimate Y0 .50 is shown to be the X value

associated with w(X) = w.50 and the 95% lower confidence limit

AAY0.05 is the X value corresponding to w.5

Note that if w(O)< w0 95 , a positive value of y0.05 cannot

be found.
AA

Computer program LOCEST calculates y0 .50 and YO.05 for spe-

cified values of w.95 and w.50 using a golden section search tech-

nique. The appropriate values found from Monte Carlo simulation

for -30, r1=5, r =30 are

WO.5 = 1.294

w.9s = 3.279

The values for n=29, r-29 are not likely to differ substan-

tially from these. Table 2 shows the LOCEST output.

The Weibull shape parameter considering 24 items censored

at the 5-th smallest time is

BL = 27.9

Using all the data the estimate is

$ 5.30

The ratio BL/BA = 5.27 corresponds to w(o) and since w(o) exceeds

w0.50 and w0.95 , positive values of both Y0.50 and yo.05 may be

calculated.

These values are y0.05 = 3.88

and y0.50 = 5.09

The two parameter estimates of xO.lO=Ll0 -y .0 and xO.50

S LbO-y.s0 are 0.364 and 1.243, respectively. The estimated shape

parameter from the adjusted data is 1.53.

- -13-
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LOCEST OUTPUT

TIME-TO-EVENT DATA FROM EGLIN AFB

WEIBULL LOCATION PARAMETER ESTIMATION

SAMPLE SIZE,N= 29

TRUNCATION NUMBER FOR LOCATION PARAMETER ESTIMATION,Rl= 5

NUMBER OF FAILURES,R= 29I

W50= 1.294

W95= 3.279

BETA HAT.(R1)= 27.940

BETA HAT(R) :5.299

BETA HAT(R1)/BETA HAT(R): 5.272

MEDIAN UNBIASED ESTIMATE OF GAMMA= 5.091

LOWER 95% CONFIDENCE LIMIT FOR GAMMA= 3.881

ADJUSTED MAXLIKE ESTIMATES OF 10-TH AND 50.-TH PERCENTILE

XO,10= 0.364

XO.50: 1.243 ADJUSTED BETA :1.533

-14-
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Figure 5 is a probability plot of the data after adjustment

by subtraction of Y0 50 , with the fitted distribution shown as

a solid straight line. A chi-square goodness of fit test was

applied and led to rejection of the hypothesis that the fitted

distribution actually represented the data (cf. Appendix). These

dashed line segments emphasize that the behavior in the two tails

is inconsistent with the fitted distribution.

Returning to Figure 3, we note that the two dashed line seg-

ments together fit the observed data very well and suggest that

the data may be a mixture of two Weibull populations; one vopula-

tion having a high shape parameter value and low mean time-to-event

and a second population having a much lower shape parameter value

and a high mean time-to-event. For this data sample 86% of the

sample belongs to the first population4

To estimate the parameters of the first population, the data

were censored at the 24-th event time and WEIBEST was rerun. The

results are given in Table 3.

The shape parameter is estimated to be 18.6. This is much

higher than the value 5.3 shown in Table 2 based on all the data.

Figure 6 is a probability plot of the censored data and con-

firms the good fit of the two-parameter Weibull population to the

bulk of the early events.

A graphical estimate of the shape parameter for the long

event time items is 1.4. This is consistent with a shape para-

meter of 1.0 which suggests that the long event time population

may have an exponentially distributed time between failures

characteristic of a poisson process governing the occurrence of

events. This suggests that the late events correspond to a sub-
. ..... . ...-1 5 -
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TABLE 3

WEIBEST OUTPUT FOR CENSORED DATA

EGLIN DATA CENSORED AT 24-TH ORDERED OBSERVATION

Group No. 1 Lives

5.2200 6.0700 6.5500
5.4100 6.1500 6.5600
5.7300 6.2600 6.5900
5.7800 6.3100 6.6000S
5.7900 6.3400 6.6000S
5.8700 6.3500 6.6000S
5.9200 6.4300 6.6000
5.9800 6.4400 6.6000S
6.0000 6.4500 6.6000S
6.0300 6.4600

LIO L5p BETA

0.5695E 01 0.6301E 01 0.1863E 02

LCL L1 0  MED LIO UCL LIO

0.5366E 01 0.5677E 01 0.5870E 01

LCL LgO MED LSO UCL LqO

0.6166E 01 C.6303E 01 0.6436E 01

LCL BETA MED BETA UCL BETA

0.1296E 02 0.1782E 02 0.2377E 02

U -16-
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population of "duds" wherein the event is triggered by some sort

of random shock rather than by the design mechanism.

3.3 Discussion of Data Analysis

The data do not confirm a three-parameter Weibull model im-

plying a "safe" time prior to which the "event" cannot occur.

A "safe" time must therefore be defined as the time associated

with some arbitrary low probability that the event will occur

prior to it. Because the data suggest a mixture of Weibull models

the direct use of a two-parameter Weiball model, as shown in

Figure 3, will result in overly conservative safe time estimates.

This may be overcome by censoring 15-20% of the long time events

which correspond to a population of "duds" that are mixed with

the effective items.
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APPENDIX

GOODNESS OF FIT TEST FOR THREE-PARAMETER WEIBULL

From Tables 2 and 3 the fitted three-parameter Weibull CDF

has the equation

F(x) 1 - exp - 0.10536 [ 3643 (A.1)

where

t = x- 5.09 (A.2)

We divide the t axis into 5 intervals each having a 20% occur-

rence probability by calculating the percentiles tO.20 ,

tO. 4 0 , tO.6 0 and t.80 where tP satisfies

p - I - exp - .10536 [t/.3 6 4 3] 1.534 (A.3)

The expected number of observations in the i-th interval is

- n x p = 29 x .20 - 5.8 (i = 2,...5) (A.4)

The following Table shows for each interval the observed

number of observations in the interval, oi, the expected number,

ej, and the square of the differences (oi - ej).

Interval on t _._ e;

0 - 0.5941 2 5.8 14.44

> 0.5941 - 1.020 9 5.8 10.24

> 1.020 - 1.492 11 5.8 27.04

> 1.492 - 2.154 4 5.8 3.24

> 2.154 - 3 5.8 7.84

A-' ip
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Under the hypothesis that the data were drawn from the fitted

distribution, the quantity

u (oi - e.) /ei = 56.2/5.8 - 9.69 (A.5)

asymptotically follows a X2 distribution with m-p-1 degrees of

freedom where:

m - no. of intervals

p - no. of parameters estimated by the method

of maximum likelihood

This asymptotic result is generally believed to be applicable

if ei  5 5. In the present case m=5 and p-3 so that u will be

approximately distributed as X2(1) under the null hypothesis.

From tables of the X2 distribution we find

X2.95(1) = 3.84

Since u = 9.69 > 3.84 the null hypothesis is rejected at the 5%

significance level.

A-2
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INFERENCE ON THE WEIBULL LOCATION PARAMETER

J. I. MoCool

SKF Industries, Inc.

King of Prussia, Pa. 19406

1. HYPOTHESIS TEST: 2 vs. 3 PARAMETER WEIBULL

The two-parameter Weibull distribution has CDF

F(x) = l-exp-[x/n1]

The maximum likelihood estimate of the shape parameter 8

calculated from the ordered observations xi in a random sample

of size n type II censored at the r-th failure is denoted (r)

and is the solution of:

1/8 + ln(xi)/r- xi'ln(xi)/ xis 0iml i:lil

where Xi = xr, i > r.

Define the random variable

w 88 (rl)/ (r)

where rI <r. The distribution of w depends only on rl, r

and n.

When sampling from the three-parameter Weibull distri-

bution with location parameter y > 0, w becomes stochastically

larger. The acceptance region for a 100a% level test of HO: y=

0 against against HI: Y >0 is:

1
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' 8 (rl)/ 8 (r) < W1.- c

Percentage points found by Monte Carlo sampling are

given in Table 1. In studies with 8=1 the choice ri=5 was

found to be nearly optimum for all n and r in the range

represented in Table 1.

2. INTERVAL ESTIMATION

Subtract Y(>O) from each ordered observation in a

random sample from a three-parameter Weibull distribution.

Define

w(l) = 8(ri)/ 8(r).

w(X) is a decreasing function of X and w(X=y) follows the

same distribution as w calculated from two-parameter Weibull

samples.

Inverting the statement: Prob[w(Y)< w1 _a]:l-a gives

the lower 100(l-a)% confidence limit:

Y> w-1 (wa).

3. EXAMPLE

The times to an ignition event for 29 fuzing devices

are as follows:

5.22, 5.41, 5.73, 5.78 5.79, 5.87, 5.)2, 5.98, 6.00, 6.03,

6.07, 6.15, 6.26, 6.31, 6.34, 6.35, 6.43, 6.44, 6.45, 6.46,

6.55, 6.56, 6.59, 6.60, 6.73, 7.13, 7.83, 9.28, 10.28

Using r1:5 and r=29 gives

8 (r1 ) : 27.9 and O(r) 5.30

2
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8(rj)/8(r) 5.27 >3.279 w0 95(r1 =5 ,r=30)

The two-parameter Weibull hypothesis is rejected in

favor of the three-parameter alternative.

The median unbiased estimate of the location parameter,

AA

Y050 is found by solving

w(Y 0 .50 ) = w0 .50 = 1.294

to be

YO. 5 0 =. 5.09

AA

A lower 95% confidence limit Y0.50 was found by solving

w(Yo.0 5 ) 
= w0.9 5 = 3.279

to be

Y0.05 = 3.88
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INFERENCE IN WEIBULL REGRESSION

John I. McCool, SKF Industries, Inc.
King of Prussia, PA 19406

1. THE MODEL

A random variable x is presumed to follow a two-parameter

Weibull distribution with shape parameter 8 and scale parameter

r that varies as an inverse power of a positive deterministic

external variable S, generically termed a stress. That is,

FCxIS) - 1 - exp - [x/nCS)]8  (1)

n(s) - no S
"Y  (2)

with no, 8, Y,x> 0

As a consequence of (1) and (2) the p-th quantile at stress S is

. (S) * (-in (l-p)) 1/ 8 . n(S) (3)

2. MAXIMUM LIKELIHOOD (ML) ESTIMATION

A life test is carried out at each of k stress levels denoted

51, S2 ... .. At the i-th stress level ni items are tested until

the first ri ordered failures are observed (type II testing).

The ML estimates of Y and 8 are calculated as the simultaneous

solution of the following equations.

k k n ikZr. I S Y  logS ]B
S,(X C8i1k i riori i !il, i os i " I l~

i ( j ) 
0(4

g -r l -0 (4)
I x i.

L]I
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k ri k n i
E logx ( j )  E S.i Y&Z x logxi

Z rg oo (S)
r i(j )ial i 1 i ~

where x i(j) is the j-th ordered life in the i-th sample.

-The ML estimate of n is

= i /Z rk (6)

i-i j-li. ii

The ML estimates of n(S) or x pS) are given by Eqs. (1) and

(2) on substituting the ML estimates of y, 6 and no .

3. PIVOTAL FUNCTIONS

The following functions are "pivotal", i.e. they follow

distributions that do not depend on the population values of

the parameters:

q - 8 (7)

W*- (y- Y)8 (8)

u* BZn Ix (S)/x (S)] (9)
p p

The distribution of q and w, depends on k, Si, ni and ri.

The distribution of u* depends additionally upon p and S. For

fixed choices of these parameters the distributions may be

determined by Monte Carlo sampling.

2N
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4. INTERVAL AND IEDIAN UNBIASED POINT ESTIMATES

Two sided 100 (1-a)% interval estimates of y, y and x (S)P
may be calculated in terms of the ML estimates and the percentage

points of q, w* and u* as:

lq(1- /2) < (10)

Y -1-a/2"lz  < Y < Y -wila (11)

x (S) • exp [-u* _ /l < xp(S) < x (S) exp [-u* /2/6]  (12)

Median unbiased point estimates are calculable as:

V- /qo.50  (13)

Y- Y - w0. 5 0 /6 (14)

X(s) -) • exp [-uo.o/0] (15)

5. PRECISION MEASURES

A useful index of how precisely 8 is determined by the series

of life tests is the ratio R of the upper to lower ends of its

confidence interval.

R -w q 1cL/i )lqicLi2 )  C16)

For Y the median length L0. 50 of the confidence interval is

a convenient index calculated as

LO5 -(W1/ w :/Z )!8q03 0  - (17)

3L0.S0 (wl~a z - Wa z)I.qo.. ... .. "(17
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For x p(S) the median ratio R0. 50 of upper to lower confidence
interval is recommended.

R0 0  exp C/ + u 1 -. / 2 )/sq 0 .5 0 ] (18)

6. NUMERICAL EXAMPLE

Rolling contact fatigue tests of ni = 10 hardened steel
specimens were conducted at k = 4 levels of the contact stress.
The tests were continued until all elements had failed (ri = 10).

The results are:

Stress

106-psi Ordered Lives

0.87 1.67, 2.20, 2.51, 3.00, 3.90, 4.70, 7.53, 14.70,

27.76, 37.4

0.99 0.80, 1.00, 1.37, 2.25, 2.95, 3.70, 6.07, 6.65,

7.05, 7.37

1.09 0.012, 0.18, 0.20, 0.24, 0.26, 0.32, 0.32, 0.42,

0.44, 0.88
1.18 0.073, 0.098, 0.117, 0.135, 0.175, 0.262, 0.270,

0.350, 0.386, 0.456

The 1M, estimates are

S 1.166 y a 13.89 no = 2.20

The 5-th, 50-th and 95-th percentiles of the distribution

of q, w* and u* corresponding to k - 4, n i a r i - 10 and the
specified values of Si are given in Table 1. The distribution

of u* was evaluated for p - 0.10 with S a 0.75 x 106 psi and
with the four test stresses.

4
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TABLE 1

Percentiles of Pivotal Functions

k - 4, n - r - 10

S1 -0.87, S2 .0.99, S3-1.09, S4-1.18

0.05 0.50 0.95

q a/8 0.8459 1.024 1.277

w, - (y-y)B -2.433 -0.3783 2.293

u" - Blog [x 0 .1 0 /x 0 .1 0 ];

S w 0.75 -0.9238 0.0555 1.023

S S1 - 0.87 -0.6495 0.0441 0.8209

S - S= 0.99 -0.5170 0.0305 0.7520

S -S 3  1.09 -0.5309 0.0318 0.7671

S S4 - 1.18 -0.6079 0.0396 0.8193

90% confidence intervals for s and y are

0.913 - 1.166/1.277 < 8 < 1.166/0.8459 = 1.378

11.92 - 13.889 - 2.293/1.166 < y < 13.889 + 2.433/1.166 = 15.98

Median unbiased estimates are

8' 1.166/1.024 1.139

y'- 13.889 + 0.3783/1.166 - 14.21

5 _ 1
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The precision measures based on a 90% interval are

R - 1.51

BLo 5s - 4.62

The confidence intervals and unbiased estimates for x0.10

are listed below for each stress along with the precision measure

0.50"

90% Confidence Interval
Median Unbiased x0

Stress Estimate Lower Upper R
10.10 l-0.50o-

0.75 16.55 7.22 38.4 6.70
0.87 2.13 1.09 3.86 4.21

0.99 0.358 0.193 0.572 3.42

1.09 0.094 0.050 0.152 3.55
1.18 0.031 0.016 0.054 4.03

Figure 1 shows R8.50 plotted against stress. The minimum

value is only slightly larger then for a single uncensored sample

of size n - 40.
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